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Abstract

Immunoc'ytochcmical methods were employed to localize the neurotransmitter

amino acid T-aminobutyric acid (GABA) by means of its biosynthetic enzyme

glutamic acid d_arboxy[ase (GAD) and the neuropepdde substance P in the area

posn'ema (AP),areasubpostrema(ASP),nucleusof the traczussolitarius0qTS)

and gelatinousnucleus(GEL). Inaddition,elccmcalstimu[adonwas app[iexltothe

rightvagus nerveatthecervicalleveltoassesstheeffec_on GAD-knmunoreac-

tivity(GAD-IR).
GABA: GAD-IR terminalsand fiberswe:'.,'observed in theAP, ASP, NTS

and GEL. They showed pronounced densityatthelevelof theASP and gradual

decrease towards the solitarycomplex. N_'-veceilswere not labelledin our

preparations.Ul=astrucmralstudiesshowed symmetricor asyrnmenSc_naptic
contacts between labelled terminals and non-immtmoreactive dendrites, axons or

neurons. Some of the labelled terminals contained both clear, and dense-core

vesicles. Our preIiminary fhadings, after, elee=ical stimulation of the vagus nerve,

revealed a bilat_'al deer, ease of GAD-IR that was particularly evid_t at the level

of theASP.
SubstanceP:SP.imrnunoreactive(SP-IR)terminalsand fibersshowed vary-

hag densities in the AP, ASP. NTS and GEL. In our preparations, the lateral sub-
divisionof the NTS showed the greatest ac=umulatiom The AS P showed medium

densityof immunoreactivevaricositiesand teaminalsand the AP and GEL

K_words." GABA, substanceP, vagus nerve,area postrema,nucleus tracms sol.itarius,immtmo-

cytochemistry,elec=icalstimulation
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displayedscattered_ar/coseaxon terminals.The eleca'onmicroscopyreve_ed

thatallimmunoreac_/veterm/rialsconmhnedclear-coreanddefoe-corevesicles

which made syrnme_c or a._e_c synapdc contact with urdabelled dendrites.
It is suggestedthat the OABAergic rarm/nais rrdght correspond to vagaI

afferent projections and that GAD/GABA and substance p might be co-localized
in thesame rarmhna/allowingthepossibilkyof a regulatedreleaseof thetransmittersharelat/ontodemands.

Introduction

The present report is pan of a study designed to invest/gate the interact/on between

neuropepddes and convendonaI neu.ro_ansmitters under conditions producing motion
sickness and in the process of sensory-motor adaptation.

A vast amount of literature has dea/t with ttfe cytoarchhec_a/ organization and
ultrastrucmral analysis of the area postrema (AP), area subpostrema (ASP), nucleus of the

tractus solitarius (NTS) and ge!atmous nucleus (GEL), all structures lccaIized in the dorsal

pan of the medulla ob/ongata (e.g., Olszewski and Baxter, 1954; Taber, 1961; Gwy-a and

Wolstencroft. 1968; Klara and Briz.zee, 1975, 1977; Chernicky et al., 1980; D'Amelio et al.,
1986). Anatomica/st u&'es have provided details of their somatotopic organization in relation

to viscera/afferents and physiological findings have demonstrated their involvement in a

variety of autonomic functions (e.g., yon Euler et aL, 1973; Gwyn et aL, 1979; Gwyn and

Leslie,/979; Katz and Kanen, 1979; Gale et at, I980; Hamilton and Gitlis, 1980; Helke et

al., 1980; Kalia and Mesulam, 1980a, b; Parmeton and Loewy, 1980; Cir/ello et al., I981;

Ka/ia, 1981; K.a/ia and Sullivan, 1982; Hefke, 1982). Neuro_rtsmitters such as GABA,
catecholamines, neuropeptides and serotonin have been ide "
procedures (e.g., Armstrong etal., 198 I, 1982.a, b",Male,, - ndH_ by tmmunocytochemica/

• _,_,u ,-_ae, 1982; Maley etal., 1983;
Kalia et al., 1984; Ma/ey, 1985; Maley and Newton, I985; Newton et aL, 1985; D'Amelio
et aL 1987; Ma/ey et aL, 1987; Newton and Ma/ey, 1987; Nomura et al., 1987) and in some

cases, synaptic hateractions between nettrotransmitters have been established ('Pickel et
al.,1979, 1984; Kubota _*taL, 1985). By combining autoradiography andjmm unocytochem.

istry., Sumai etat. (1983) reported synaptic interactions between vagal atTeren ts and catechol-

ammergic neurons in the NTS of the mr. GILa/fibrillary acidic protein and giutamine
synthetase were identified in the gtioependymal cells an
etaL, 1985 19 7_ ,,,,, ............ dastrocytesoftheeatAP('D,Amelio' 8 ' '" Th" "'_v,u'ce ot me A.e as _e emetic,._, ......
corroborated (Borison and Briz.zee, 195 I; .... "un:ceptor tnggerzone has been

Carpenter et al., 1983; Borison et al., 1984) and
evidence of its participation in the emetic response to motion has also been reported ('Wang
and Chinn, 1952, 1954; Briz.zee et al., 1980; Crampton and Daunton, 1984).

In this report we will describe the light microscopic distribution and ultrastructural

appearance or"GAD- and SP'immunoreactivity, the Preliminary observations on the effects
of electrical stimulation of the vagus nerve on GAD-tR and discuss some of our views with

respect to the relationship between neurotransmitter action and distribution pattern and
degr_'of density of the immunoreactive structures.

.,

,_.t
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Material and Methods

Animals

Adult cats were employed for this study. They were housed in air-conditioned rooms and
given regular dry pellet cat food and water ad libitum.

Antisera

The well characterized GAD-antiserum (code #P3) was kindly provided by Dr. Jang-

Yen Wu ('Pennsylvania State University, Hershey MecLical Center, Hershey, PA) (for review,
see Wu et al., 1982).

The monoclona[ antiserum for substance P was obtained from Pel-Freeze Biologicals,
code MAS 035b.

Immuaocytochemical Procedures

The peroxidase-antiperoxidase method developedby Stemberger (1979) was employed
to visualize the immunoreactivity of both GAD and SP. Dilution of antisera was 1:1000. The

details of the general procedures concerning fixation of the brain and treatment of the sections

have been previously published 03,,_i_ieli-o e_aL, 1987).

Electrical Stimulation of the Vagus Nerve

The animals were tranquilized with an intramuscular injection of 0.5 ml ketamine HC1,

after which they were anesthetized with an intravenous injection of sodium pentobarbital (30-

35 mg/kg). The right cervical vagus nerve was exposed between the branching points of the
superior pharyngeal and the recurrent nerves. BipoIar electrodes were positioned on the nerve

and biphasic square-wave pulses of 0.6 sec duration were applied at 1-10 ma and 60 I-Iz. The

current was steadily increased from 1 ma to 10 ma to determine a threshold response from
the nerve. The threshold response was hyperventilation as observed visually or recorded on

a polygraph via a respitometer. The nerve was stimulated continuously for a total duration

of one hour. During the last 5 minutes of stimulation the thoracic cavity was opened and the

perfusion procedure via the heart was started (see D'Amelio et al., 1987). - -

Results

GAD Immunocytochemistry

The details of GAD-immunoreactivity in the AP, ASP, NTS and GEL have been

published elsewhere (D'Amelio et al., 1987). Briefly, the light microscopic examination

revealed variable degree of density of the GAD-IR terminals and fibers along the rostroeaudal
axis. Their distribution is exemplified in Figures IA. B and C.

It is obvious that the ASP is distinguished from the AP and NTS by its high concentration
of G AD-IR pre-term inal fibers and boutons which are seen at all levels examined. No labelled

neurons were observed in our preparations.



116

IV

A

D .es? ',_-,".

Fig. 1. A: Rostra/ segment at the level of the area postrema (AP). The area
subpostrema (ASP) is distinguished by the highdensity of GAO-IR terminals. The
decrease in density is evident towards the gelatinous nucleus (GEL). B: GAD-IR

is present in the lateral sub-divisionof the nucleus of the tractus solitarius (NTS).
The medial region of the nucleus (M) shows lighter immunoreactivity. C: Medial
segment of the AP. Patches of GAD.IR terminals are visible throughout the AP,

The high density of the ASP is also apparent at this level. D: Medial segment of
the AP. In both the AP and ASP there is extreme depletioo of immunoreactivity
after electrical stimulation. Only scattered GAD-IR immunoreactive boutons are
visible in the ASP. IV, fourth ventric!e:T, solitary tract. Magnifications: A x150; B,
C and D, x250.

The uJu'astructuraI study demonstrated that the GAD-IR boutons corresponded to
immunoacdve terminals with occasional staining of the pre-terminal segment. The im-
munoprecipitate outlined clear synapdc vesicles, mitochondria and the inner surface of the

plasma membrane. Many of the profiles contained dense-core vesicles in variable number.

Synapdc contacts, either symmetric or asymmemc were obser'y, ed between labelled termi-
nals and unlabelled dendrites, axons or neurons ('Fig. 2).

The most ostensible finding of our preliminary observations after electrical sdrnuladon
or"the vagus nerve was a noticeable bilaterA decrease in density of the GAD-IR terminals of

the ASP. In non-stimulated animals the density of these terminals was clearly higher in ASP
than in the underlying structures. The decrease with stimulation seemed to involve all lcvels
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Fig. 2. A: Symmetric synaptic contact (arrow) between a GAD-IR axon profile and
an unlabelled axon containing clear-core vesicles an dscat:ered dense-c_re ves-

icles (arrowhead). B: GAD-IR profile forms a long symmetric contact with a

dendrite (D). C: A GAD-IR axon terminal which contains clear-core vesicles and a
few dense-core vesicles forms symmetric conta_ with a dendrite (arrowhead). In

close apposition to the immunoreactive terminal is seen a non-immunoreactive
axon profile forming an asymmetric contact with the same dendrite (arrow). D:

Symmetric contact (arrow) between a GAD-IR axon profile containing both clear-
and dense-core vesicles and a dendrite. E: Asymmetric (arrow) and symmetric

(arrowhead) contacts between two GAD-IR terminals with the same dendrite (D).

F: GAD-IR pre-terminat segment and bouton. Several dense-core vesicles are
seen in add t On tO the clear'core ones. Magnifications: A, x16,000; B, x25,000; C

and D, x20,500; E and F, x25,000.
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of the ASP ('Fig. ID). The level of GAD-IR in the A.P, NTS and GEL also showed a d_rease

in stimulated animals, with some inter-animal variation in the different regions. This finding
has to be evaluated with further quantitative assessment.

Substance P [mmunocywchemistry

The pattern of immunoreactivity of this neuropeptide within the AP, ASP and NTS is

largely consistent, with some variations, with that found by other investigators (Maley and

Etde, 1982; Newton etal., 1984). In the ventromediaJ pan of the ASP, SP-IR puncture

structures and varicose axons appeared to be more abundant than in the dorsolateral region.
In the AP, " ......NTS and GeL, varymg densmes ofimmunoreacuvlty were found along the rostro-
caudal axis, arranged into aggregates of ill-defined boundaries. The AP proper contained

mainly varicose terminals, randomly distributed. In ourpreparations the _W'I'S exhibited

labelled terminals and varicosities m all topographical subdivisions with distinct pronounced

density in the lateral subdivision. We did not find labeql"ed neuronsin any of the regions under
study (Fig. 3).

r
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Fig. 3. A: SP-IR terminals are seen in the ASP, particularlytowards the ventrome-

dial region. A decrease in density is observed dorsolatera/ly. Scattered patches of
immunoreac:ive terminals are seen in t-he AP proper (arrow). B: The pronounced
density of SP-tR terminalsand fibers is apparent in the lateral sub-division of the

NTS and contrasts with the light immunereactivity ot the medial region (M). T:
solitary tract. Magnifications: A and B, x250.

We concentrated our electron microscopic studies mainly on the AP and ASP. The most
significant finding was that all the immunoreacdve terminals contained dense-core vesicles

in variable number (2- I0) together with clear-core vesicles bound by im munoprecipitate. The
majority of the dense-core vesicles showed immunoreactivity. The synaptic contacts were

mainly between labelled axons and dendrites, either symmetric or asymmetric (Fig. 4).

!
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Fig. 4. A: SP-IR immunoreactive bouton in which the dense-core vesicles are
markedly immunoreactive, except for one (arrowhead). B, C and D:. Symmetric

synaptic contacts beween SP-IR terminals and unlabelled dendrites (arrow-

heads). E: Two SP-IR terminals, one weakly ]abeiled(arrowhead) and the other

strongly immunoreactive (arrow), forming symmetric contacts with the same

dendritic profile. F: Two axon terminals, one SP-IR and one unlabelled (Ax), in

close apposition. Magnifications: A, x25,000; B and C, x20,500; D, x 16,000; E and
F, x20,500.
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Discussion

It is our contention that extreme caution should be applied in assessing the distribution

and 'mapping' of neurotransmitters in the central nervous system by means ofimmunocyto-
chemical techniques. It is frequendy neglected that the difference in immunocytochemical

images in various areas of the brain obtained by different investigators is, in many instances,
not the product of methodological procedures, source or sensitivity of antisera, etc., but of

the dynamic character of intercellular signaling among neurons, which also frequently
accounts for inter-animal variation. This signaling is the reflection of the actual 'motion' of

neuron'ansmitters within a functional system in response to external (environmental) or
internal (homeostatic changes) conditions which in turn might affect the rate of biosynthesis
of the transmitter or its precursor and hence its release. In consequence, we prefer to consider

the distribution of a particular neurotransmitter as 'provisional" and rely upon procedures
such as tract-tracing methods, autoradiography, and physiological methods, combined with

ultrastructural and light microscopic immunocytochemistry, to try tOdef'me Communication
lines among neural regions.

Fotlfwing this line of argument for the region under study, we think that the distribution

pattern of GABAergic terminals in the AP, NTS, ASP, and gelati_ nucleus, closeIy

resembles that of vagal afferent projections found by means of horseradish peroxidase _-_.P)
injections of the proximal cut ends of the vagus nerves (Ciriello et aL, 1981_, t'oilowing HR.P
or _H]leucine injections of the nodose ganglion (Gwyn et el., 1979) and with the use of

degeneration methods after the removal of the nodose ganglion (Gwyn and Leslie, 1979).
Furthermore, our preliminary findings of the depletion of GAD-IR in those areas after

electrical stimulation of the vagus nerve seem to confirm that at least pan of the GABAergic

projections correspond to vagal afferents. The bilaterality of the GAD-immunoreactivity
depletion seems a_s0 to coincide with the tract-tracing studies of Kal_taand Mesulam (1980),

who found bilateral sensory labelling of the AP and NTS after HRP in_ections of the right
nodose ganglion. There also appears to be evidence that the depletion in-G'AD-IR is not due

to a widespread effect of the vagal stimulation, since some areas of the histological sections,
e.g., the t'¢nucleus of the inferior olive, show prominent GAD-IR in both non-stimulated and

stimulated cats. As for the causes of GAD-tR depletion, it is an early stage in this research

to attempt an explanation, since the analysis of sub-cellular and molecular mechanisms'has
not been initiated.

With respect to SP-m in the AP, r_S and ASP, it is interestingionotice that aIthough
the density gradients differ from those of GAD-IR, they follow a similar pattern of
localization, with the lateral sub-division of the NTS showing the greatest accumulation of

SP-IR terminals and fibers. At this point, and in keeping with the opening remarks of our

discussion, it is important to emphasize that it is not density, considered in a rigid context,
of immunoreactive fibers and terminals that is expected to provide meaningful data to assess
the functional significance of neurochemical phenomena in a given area of the nervous

system. For example, in previous studies dealing with the _mmtmoreactiv_tv of substance P

in the NTS of the cat (Maley and Elde, 1982) and Rhesus monkey (Maley et aL, 1987), it was

reported that the respiratory subdivisions displayed a low level of immunoreactivity. These
findings led the re.searchers to speculate that substance P does not play a major role in the

mediation of respiratory functions. However, measurements of substance P by microdialysis
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in the cat NTS CLindefors et al., 1986") and microinjections of substance P in the NTS of the

rat (Carter and Lightman, 1985) have supplied significant evidence for the relevance of

substance P in respiratory functions. In our opinion, the significance of the presence of a
neurotransmitter within a particular structure will not be properly understood until its source

and synapfic relations with other functional systems are clearly defined.

One feature that deserves to be stressed is the presence in all SP-IR terminals of dense-

core vesicles, a characteristic already shown in the NTS and other regions of the nervous

system (Maley, 1985; Pickel et al., 1979). The possibility of peptide storage by those vesicles
has been suggested by Pickel et al. (1979). Interestingly, many GAD-IR terminals also

contain dense core vesicles in addition to the clear-core ones. This observation suggests that
both messengers, GABA and substance P, may coexist within the same terminal, as has been

previously reponed for other areas of the nervous system. For example, 95-98% of SP-IR

cortical neurons have been found to be also immunoreactive for GABA and GAD (Jones and

Hendry, 1986). Additional observations account for the possibility Of such co-existence.

Imm unocytochemical studies of substance P in other species have shown its presence within

the neurons of the nodose ganglion, which is imown to send sensory projections to the solitary
complex and AP (Katz and Kanen, 1980). Since, according to our observations and those of

others, both GAD and substance P are consistently present in those regions, it is reasonable

to assume that the sensory cells of the nodose ganglion might regulate the genetic expression

of GABA, substance P and their biosynthetic enzymes. Our own preliminary studies after

infra-nodose electrical stimulation of the vagus nerve provide further support to this

hypothesis. Naturally, the possibility of the existence of separate neuronal populations in the
nodose ganglion expressing either GAD/GABA or substance P, cannot be excluded.

The co-existence of both neuronal messengers in fibers and terminals of the region under

study wouId once again demonstrate the extensive scope of the transmission process and the

adaptive capacities of brain circuitry, with variable and regulated responses for the release

of a neurotransmitter (or neuromodulator) according to the imposition of a given stimulus.
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